
Formal Requirements-Based Programming for Complex Systems 

James L. Rash, Michael G. Hinchey 
NASA Goddard Space Flight Center 

Information Systems Division 
Greenbelt, MD 2077 1, USA 

{james.l.rash, michae1.g.hinchey } @nasa.gov 

Christopher A. Rouff 
SAIC 

Advanced Concepts Business Unit 
McLean, VA 22102, USA 

rouffc @saic.com 

Denis GraCanin 
Department of Computer Science 

Virginia Tech 
Blacksburg, VA 2406 1, USA 

gracanin@ vt.edu 

Abstract 1. Introduction 

Computer science a.s afield has not yet produced a gen- 
eral method to mechanically transform complex computer 
system requirements into a provably equivalent implemen- 
tation. Such a method would be one major step towards 
dealing with complexity in computing, yet it remains the elu- 
sive “holy grail” of system development. Currently avail- 
able tools and methods that start with a formal model of 
a system and mechanically produce a provably equivalent 
implementation are valuable but not sufficient. The “gap” 
that such tools and methods leave unfilled is that the formal 
models cannot be proven to be equivalent to the system re- 
quirements as originated by the customer For the classes of 
complex systems whose behavior can be described as a f i -  
nite (but significant) set of scenarios, we offer a method for 
mechanically transforming requirements (expressed in re- 
stricted natural language, or appropriate graphical nota- 
tions) into a provably equivalent formal model that can be 
used as the basis for code generation and other transforma- 
tions. While other techniques are available, this method is 
unique in offering full mathematical tractability while us- 
ing notations and techniques that are well known and well 

The development of complex systems that have high lev- 
els of dependability and reliability requires the developer to 
represent the system as a formal model that can be proven 
to be correct. Through the use of currently available tools, 
the model can then be automatically transformed into code 
with minimal, or no, human intervention and with a cor- 
respondingly minimized chance of introducing errors. Au- 
tomatically producing the formal model from customer re- 
quirements would further reduce the chance of introduction 
of errors by developers and would result in highly depend- 
able complex systems. 

We will not critique currently available system develop- 
ment tools and methods that are based on formal models 
here; but, to the best of our knowledge, they provide nei- 
ther automated generation of the models from requirements 
nor automated proof of correctness of the models. There- 
fore, currently there is no automated means of producing a 
system-or a complex procedure-that is a provably cor- 
rect implementation of the customer’s requirements. Fur- 
ther, requirements engineering as a discipline has yet to pro- 
duce an automated, mathematics-based process for require- 
ments validation. 

2. Problem Statement trusted. We illustrate the application of the method to an ex- 
ample procedure from the Hubble Robotic Servicing Mis- 

Automatic code generation from requirements has been 
the ultimate objective of software engineering almost since 
the advent of high-level programming languages. The need 
for “requirements-based programming”, whereby require- 
ments can be transformed into an implementation in a man- 
ner that supports the entire lifecycle of the development pro- 

sion currently under study and preliminary formulation at 
NASA Goddard Space Flight Center 

Key Words: Validation, verification, formal methods 



cess, cannot be exaggerated [7]. Several tools and products 
exist in the marketplace to automate code generation from 
a given model expressed in a particular notation. However, 
typically the code they generate includes portions that ei- 
ther are never executed or cannot be justified from either 
the requirements or the model. Moreover, existing tools do 
not and cannot overcome the fundamental inadequacy of 
all currently available automated development approaches, 
which is that they include no means to establish a provable 
equivalence between the requirements stated at the outset 
and either the model or the code they generate. 

Traditional approaches to automatic code generation pre- 
suppose the existence of an explicit (formal) model of real- 
ity that can be used as the basis for subsequent code genera- 
tion. While such an approach is reasonable, the advantages 
and disadvantages of the various modeling approaches used 
in computing are well known and certain models can serve 
well to highlight certain issues while suppressing other less 
relevant details [ 161. It is clear that the converse is also true. 
Certain models of reality, while successfully detailing many 
of the issues of interest to developers, can fail to capture 
some important issues, or perhaps even the most important 
issues. 

2.1. Our Approach 

Without a formal specification of the system under con- 
sideration, there is no possibility of determining any level 
of confidence in the correctness of an implementation of a 
complex system. The formal specification must fully, com- 
pletely, and consistently capture the requirements set out. 
Clearly, we cannot expect requirements to be perfect, com- 
plete, and consistent from the outset, which is why it is 
even more important to have a formal specification, through 
which errors, omissions, and conflicts can be identified. The 
formal specification must also reflect changes and updates 
from system maintenance as well as changes and compro- 
mises in requirements, so that it remains an accurate repre- 
sentation of the system throughout the lifecycle. 

The Requirements-to-Design-to-Code (R2D2C) method 
described in this paper is unique in that it allows for full for- 
mal development from the outset, and maintains mathemat- 
ical soundness through all phases of the development pro- 
cess, from requirements through to automatic code gener- 
ation. In this approach, engineers (or others) may express 
system requirements as scenarios in constrained (domain- 
specific) natural language, or in a range of other notations 
(including UML use cases). These will be used to derive a 
formal model that is guaranteed to be equivalent to the re- 
quirements stated at the outset, and that will subsequently 
be used as a basis for code generation. The formal model 
can be expressed using a variety of formal methods. Cur- 
rently we are using CSP, Hoare’s language of Communi- 

cating Sequential Processes [ 11, 121, which is suitable for 
various types of analysis and investigation, and as the ba- 
sis for fully formal implementations as well as automated 
test-case generation, etc. 

The approach may be used to reverse engineer systems 
(that is, to retrieve models and formal specifications from 
existing code, and to “paraphrase” in natural language, etc.) 
formal descriptions of existing systems. Not limited to gen- 
erating high-level code, it may also be used to generate busi- 
ness processes and procedures, and we are currently experi- 
menting with using it to generate instructions for robotic de- 
vices to be used on the Hubble Robotic Servicing Mission 
(HRSM) (see Section 4). Further, we are exploring its po- 
tential as a basis for an expert system verification tool, and 
as a means of capturing expert knowledge for expert sys- 
tems. 

3. Requirements to Design to Code 

3.1. R2D2C Method 

The R2D2C approach involves a number of phases, 
which are reflected in the system architecture shown in Fig- 
ure 1. The following describes each of these phases. 

D1 Scenarios Capture: Engineers, end users, and others 
write scenarios describing intended system operation. 
The input scenarios may be represented in a con- 
strained natural language using a syntax-directed ed- 
itor, or may be represented in other textual or graphi- 
cal forms. 

D2 Traces Generator: Traces and sequences of atomic 

D3 Model Inference: A formal model, or formal specifica- 
tion expressed in CSP is inferred by an automatic theo- 
rem prover-in this case, ACL2 [ 141-using the traces 
derived in D2. A deep’ embedding of the laws of con- 
currency [9] in the theorem prover gives it sufficient 
knowledge of concurrency and of CSP to perform the 
inference. The embedding will be the topic of a future 
paper. 

D4 Analysis: Based on the formal model, various analy- 
ses can be performed using currently available com- 
mercial or public domain tools and specialized tools 
that are planned for development. Because of the na- 
ture of CSP, the model may be analyzed at different 
levels of abstraction using a variety of possible imple- 
mentation environments. This will be the subject of a 
future paper. 

events are derived from the scenarios defined in D 1. 

1 “Deep” in the sense that the embedding is semantic rather than merely 
syntactic. 



D5 Code Generator: The techniques of automatic code gen- 
eration from a suitable model are reasonably well un- 
derstood. The present modeling approach is suitable 
for the application of existing code generation tech- 
niques, whether using a tool specifically developed for 
the purpose, or existing tools such as FDR [3], or con- 
verting to other notations suitable for code generation 
(e.g., converting CSP to B [4]) and then using the code 
generating capabilities of the B Toolkit. 

It should be re-emphasized that the “code” that is gen- 
erated may be code in a high-level programming lan- 
guage, low-level instructions for (electro-) mechanical 
devices, natural-language business procedures and instruc- 
tions, or the like. 

Paraphrasing, whereby more understandable descrip- 
tions (above and beyond existing documentation) of ex- 
isting systems or system components are extracted, is 
likely to have useful application in future system mainte- 
nance for complex systems where the original design docu- 
ments have been lost or modified so much that the original 
design and requirements documents do not reflect the cur- 
rent system. 

3.2. R2D2C Implementation 

The current R2D2C implementation translates the CSP 
model into Java code [5 ] ;  the derived design is transformed 
into an equivalent software representation. The Java pro- 
gramming language was selected both for tool implementa- 
tion and for the target platform for the following reasons. 

Java is a general-purpose concurrent class-based 
object-oriented programming language, with very few 
implementation and hardware dependencies. 

An off-the-shelf implementation (library) of CSP for 
Java [2] is available. While it does not provide direct 
CSP-to-Java mapping, it conforms to the CSP model of 
communicating systems for Java multi-threaded appli- 
cations [ 151. There is also support for distributed JCSP 
components using JCSP.net [ 191. 
Java Swing [ 181, in combination with some Java IDES, 
greatly simplifies user interface development. 

Availability of many Java based translator develop- 
ment tools. 

The translators are implemented using the ANTLR [ 11 
tool th’at provides a framework for constructing recogniz- 
ers, compilers, and translators from grammatical descrip- 
tions. A discussion of ANTLR and some related tools can 
be found in [ 171. 

A planned front end tool, a scenario editor, will sup- 
port this process. An additional planned tool will enable 
an automated translation of constraints and restrictions into 

a propositional form that can be subjected to formal proof 
based on the CSP model. Appropriate algorithms will be de- 
veloped to analyze properties of distributed systems that use 
a CSP-like communication infrastructure [ 131. CSP models 
for a specific programming language implementation fur- 
ther increase modeling capabilities (e.g., for Java [20]). 

4. Example from NASA Hubble Robotic Ser- 
vicing Mission 

To illustrate the application of E D 2 C  in the verification 
of complex robotic operations procedures, we select a ser- 
vicing procedure from the Hubble Robotic Servicing Mis- 
sion (HRSM)-which is in the planning phase of develop- 
ment at NASA Goddard Space Flight Center (GSFC). 

4.1. Background 

As one of history’s most productive and significant sci- 
entific instruments, the Hubble Space Telescope (HST) has 
brought about new knowledge in astronomy and astro- 
physics as well as increased public interest in those fields. 
US Congressional recognition of its value resulted in the al- 
location of funding to begin preparation toward saving the 
telescope from destruction when it falls back to Earth due 
to orbital decay over the next decade. 

One possible approach to saving HST involves a Space 
Shuttle flight to enable astronauts to refurbish the instru- 
ment. Since the HST does not have its own propulsion sys- 
tem, it would have to have one installed to enable it to boost 
itself back to a safe orbit. This strap-on propulsion system, 
delivered by the Shuttle and attached to HST by the astro- 
nauts, would also enable the HST to safely de-orbit at the 
eventual end of its life. 

Another possible approach to saving the HST would 
involve a robotic mission that would perform the same 
tasks-refurbishment and attachment of a propulsion sys- 
tem. NASA Goddard Space Flight Center has been studying 
this alternative approach under the name “Hubble Robotic 
Servicing Mission” (HRSM). The final decision on which 
approach (or indeed whether any approach) will be carried 
out has yet to be made, at the time of writing. 

Originally designed to be serviced by astronauts, the 
HST presents challenges to developing a servicing mis- 
sion based on robotics. For example, safe robotic access 
to replaceable internal components and safe manipula- 
tion of those components and their connections require 
development of unique tools, fixtures, techniques, and pro- 
cedures. The satisfaction of power, communications, and 
physical/thermal/electrical constraints and restrictions en- 
tails a significant level of complexity in any procedures 
that might be used by either robotic or human servic- 
ing agents. In the following sections, we focus on the pro- 



File Edit Tools Help 

........._ ...... 
i 

GA sends.brakes~t .  
DRDne rece-ms brakeset then sends brakerelease then sends stabilize then sends  brakeset. 

1DfU:wo receims brakeset then sends wfetwlaquire Wen smds brakeset. 

File Edit Tools Help 

GA = brakeset ! 0 -> GA ; 
DRone = brakeset ? x - 3  brakerelease ! 0 -a  stabilize ! 0 -a  brakeset ! 0 -3 DRone ; 
$IRhvo = brakeset ? x - a  wfctoolaquire ! 0 -2 brakeset ! 0 -> DRtwo ; 
System = URorie [I { I  I} I] DRtwo [I { I  1) I] GA ; 1 
Figure 2. Snapshots of the R2D2C tools. (a) Natural language input; (b) generated CSP specification. 

A sample procedure description is provided in Table 1. 
This is the actual procedure description that will be used 
in the HRSM (currently, the descriptions are written in this 
format in MS Word with XML). 

The procedure describes how to remove the WFC Tool 
Caddy from stowage. Initially, GA, DR1, and DR2 are pow- 
ered up, checked, and readied to perform the retrieval of the 
WFC Tool Caddy. Only one of GA, DR1, and DR2 should 
move at any time in order to avoid possible collision and 
damage to the robot. This “mutual exclusion” rule must be 
maintained in the procedure specifications. The GA then PO- 

sitions the robot in front of the EM. One of the dextrous 

robots is then stabilized, while the other dextrous robot re- 
moves the WFC Tool Caddy. 

The fragment starts when GA sets the brakes. DR1 then 
releases the brakes, stabilizes, and sets the brakes. DR2 then 
releases the brakes, acquires the WFC Tool Caddy and sets 
the brakes. The fragment of the procedure that we address 
here can be stated in restricted natural language (Figure 3). 

R2D2C then translates the fragment into CSP (Figure 4). 
The CSP notation used is limited to the ACII character set 
to insure compatibility with the other tools used. 

This specification is very simple and does not capture the 
sequential operation of GA, DR1, and DR2 and the “mu- 



future enhancement 

Figure 1. The R2D2C method. 

cedures that are being formulated for robotic agents to 
carry out for this servicing mission. However, it is to be un- 
derstood that even if human astronauts, instead of robop, 
conduct the same servicing activities, the necessary proce- 
dures would be similar, and in any case would have to be 
formulated generally with the same level of detail and sub- 
jected to the same overall mission constraints (thermal 
restrictions, communications windows, etc.). 

The robotic servicing mission under study assumes 
the use of the Dextrous Robot (DR) “Dextre” built origi- 
nally as the Special Purpose Dextrous Manipulator by MD 
Robotics, Brampton, Ontario, Canada, for exterior mainte- 
nance of the International Space Station. 

The procedures currently under development are proving 
to be extremely complex. Several of the procedures (such as 
the example in Section 4.3) will take several days to com- 
plete. The robots can only run for 8 hours per day, for a vari- 
ety of reasons: battery life, availability of real-time commu- 
nications with the ground operations center, etc. The lead 
time from procedure planning to ultimate implementation 
(if the servicing mission gets the go-ahead) is over 2 years. 
Even then, it is anticipated that the mission will be under 
pressure to prepare all of the necessary hardware and get all 
of the procedures in place. 

An additional level of complexity arises from the need to 
completely regenerate the time-line for all of the procedures 
once the robotic equipment is in orbit in proximity to the 
telescope. To enable real-time video of the servicing mis- 
sion, two Tracking and Date Relay Satellites (TDRS) will 
be used to relay high-rate video data to the mission con- 
trol center on the ground. However, one of the TDRS satel- 
lites will be unavailable for 12 minutes every 90 minutes, 
thus preventing a few of the operations for that time period. 
Some parts of the procedures may continue (e.g., returning 
the grapple arm to the ejection module), while others must 
be halted until the operations are once again visible to mis- 
sion controllers on the ground. Although the blackout pe- 
riods can be calculated, their occurrence is based on the fi- 

e 

nal orbit of the robotic devices. Therefore, the exact black- 
out times can only be calculated after launch, at which point 
some of the procedures, especially those with tasks that ex- 
ceed 78 minutes, may need to be regenerated. 

4.2. Procedures 

Figure 2, consisting of two screen shots from a run of 
the prototype R2D2C tool, illustrates the use of R2D2C for 
a simple procedure fragment. Figure 2(a) shows the natural 
language input stage, while Figure 2(b) illustrates the gen- 
erated CSP equivalent. 

4.3. Specification of a possible procedure to re- 
place the Wide Field Camera ( W C )  

We will consider a portion of one possible version of a 
procedure for robotic replacement of the Wide Field Cam- 
era (WFC), chosen from an early version of the vast col- 
lection of servicing procedures that have been developed to 
date. We use this example to show, for one hypothetically 
possible case, how an error in the procedure could be found 
automatically by the R2D2C tool. We will illustrate its map- 
ping from a natural language description to a formal model 
upon which to perform reasoning and analysis to detect er- 
rors (e.g., deadlocked actions or violations of constraints or 
restrictions). An additional possible result (not illustrated 
here) would be to transform the formal model into an imple- 
mentation consisting of appropriate code that would, for ex- 
ample, represent actual ‘instructions that could be executed 
by the robot. 

The robotic elements involved in the procedure are the 
Grapple Arm (GA), Dextrous Robot #1 (DRl), and Dex- 
trous Robot #2 (DR2), along with a collection of special 
tools, tool caddies, fixtures, etc. The other relevant items for 
the procedure include the ejection module (EM), the new 
WFC, and the HST itself with the old WFC that is to be re- 
placed. 



GA 
Daily GA/DR Power Up and 
Checkout (00: 15) 
Retrieve WFC Tool Caddy 
(01:33) 
Command EM tool stowage 
door open: 

0 Release Brakes (0O:Ol) 

0 Maneuver to EM tool 
stowage location (00: 10) 

0 Set Brakes (00:Ol) 

DR 1 
Daily GA/DR Power Up and 
Checkout (00: 15) 
Retrieve WFC Tool Caddy 
(01:33) 

0 Release Brakes (0O:Ol) 

0 Stabilize (00:15) 

0 Set Brakes (00:Ol) 

0 Release Brakes (00:Ol) 

0 Release from Stabilization 

0 Set Brakes (0O:Ol) 
(00:lO) 

Table 1. Sample WFC procedure 

DR2 
Daily GA/DR Power Up and 
Checkout (00: 15) 
Retrieve WFC Tool Caddy 
(01:33) 

0 Release Brakes (0O:Ol) 

0 Acquire WFC Tool Caddy 

0 Release WFC Tool Caddy 

0 Remove WFC Tool Caddy 

0 Set Brakes (00:Ol) 

Micro-Fixture (00:20) 

stowage bolt (00: 10) 

from stowage (00:20) 

GA sends brakeset. 

DRone receives brakeset then sends brakerelease then sends stabilize then sends brakeset. 

DRtwo receives brakeset then sends wfctoolaquire then sends brakeset. 

Figure 3. A simplified procedure fragment 

tual exclusion” requirement. Additionally, some steps for 
the DR2 operation are omitted. 

The next step is to add sequential constraints (Figure 5). 
DR2 cannot continue until it receives a sequence of mes- 
sages (brakerelease, brakeset) ,which is possible only when 

DR1 completes its task. 
The corresponding CSP is shown in Figure 6 .  
Constraints incorporated into the prototype R2D2C tool 

are, at this stage, minimal in number, but serve to demon- 
strate the potential of the R2D2C method in verifying 



channel brakerelease, brakeset, s tab i l ize ,  wfctoolaquire : T ; 
GA = brakeset ! 0 -> GA ; \ \  
DRone = brakeset ? x -> brakerelease ! 0 -> s t a b i l i z e  ! 0 -> brakeset ! 0 

D R t w o  = brakeset ? x -> wfctoolaquire ! 0 --> brakeset ! 0 -> DRtwo ; 
System = DRone [ I  { I  I }  I ]  DRtwo [ I  { I  I }  I ]  GA ; 

-> DRone ; 

process 
GA = brakeset!O -+ GA 

process 
DRone = brakeset?x -+ brakerelease!O + stabilize!O 4 brakeset!O -+ DRone 

process 
DRtwo = brakeset?x -+ wfctoolaquire!O -+ brakeset!O -+ DRtwo 

process 
System = DRone )I DRtwo 11 GA 

Figure 4. An example fragment of the Wide Field Camera replacement procedure, as translated into 
CSP, (a) in plain text, (b) prettyprinted. 

GA sends brakeset. 

DRone receives brakeset then sends brakerelease then sends stabilize then sends brakeset. 

DRtwo receives brakerelease then receives brakeset then sends wfctoolaquire then sends brakeset. 

Figure 5. A simplified sequential procedure fragment 

robotic servicing procedures for the Hubble. To pro- 
vide an illustration of the capability for automatic error 
discover, we imagine that a real-time repair mission oper- 
ations contingency has occurred and that the above proce- 
dure fragment is proposed to be changed. 

DR2, due (in this imagined contingency) to some techni- 

bolt. As a consequence, DR1 now has to release the bolt to 
enable DR2 to acquire the WFC Tool Caddy (Figure 7). 

the 's' automaticdly per- 

mal model, resulting in the detection of a violation of a 
servicing-mission constraint 9. 

The violation is a deadlock that will cause DR2 to block. 
Adding the bolt release at the end of the sequence, rather 
than before setting the brakes, will give the result that the 
trace (or sequence of messages) (boltrelease, brakeset) will 
not be generated. Instead the sequence will be (brakeset, 
boltrelease). 

Although very simple, this error has a degree of sub- 
tlety and might easily occur in the planning of the proce- 
dures. DR2 releases the brakes at the same time DR1 sets 
the brakes, thus violating the sequentiality requirement-an 
error automatically detected by the R2D2C tool. 

The full body of constraints and restrictions number in 

mented for the HRSM. into the constraints and 
Restrictions Document (CARD), they embody a great deal 

ually to validate a procedure, which provides considerable 

dure 

problems, the wFc Caddy stowage the many hundreds, and have been formulated and docu- 

The prototype R2D2C tool transforms this scenario into 

On this for- 

of complexity and become very demanding to apply man- 

justification for developing an automated means for proce- 
in Figure 8. The 

a range Of and verification 

The R2D2C tool can incorporate, and automates the ap- 
Plication Of, arbitrarily many HRSM constraints and restric- 
tions as well as other kinds of verification analysis to detect 
errors and Problems such as omissions9 deadlock, livelocky 
and unreachable Steps. 



channel brakerelease, brakeset, s t a b i l i z e ,  wfctoolaquire : T ; 
GA = brakeset ! 0 -> GA ; 
DRone = brakeset ? x -> brakerelease ! 0 -> s t a b i l i z e  ! 0 -> brakeset ! 0 

-> DRone ; 
D R t w o  = brakerelease ? x -> brakeset ? x -> wfctoolaquire ! 0 -> brakeset ! 0 

System = DRone [ I  { I  I }  I 1  D R t w o  [ I  { I  I 1  I 1  GA ; 
-> DRtwo ; 

process 
GA = brakeset!O 4 GA 

process 
DRone = brakeset?x + brakerelease!O -+ stabilize!O + brakeset!O -+ DRone 

process 
DRtwo = brakerelease?x -+ brakeset?x --+ wfctoolaquire!O -+ brakeset!O .-+ DRtwo 

process 
System = DRone 11 DRtwo 1 1  GA 

Figure 6.  CSP for the sequential procedure fragment, (a) in plain text, (b) prettyprinted. 

GA sends brakeset. 

DRone receives brakeset then sends stabilize then sends brakeset then sends boltrelease. 

DRtwo receives boltrelease then receives brakeset then sends wfctoolaquire then sends brakeset. 

Figure 7. Modified sequential procedure fragment 

4.4. Results and Future Tool Support 

The application of the prototype R2D2C tool to the ex- 
ample described above shows the potential benefit of an au- 
tomated, mathematically sound method for verifying the 
Hubble robotic servicing procedures. Demonstrating that 
it can automatically detect violations of the documented 
HRSM constraints and restrictions was an important step 
towards establishing that the benefits existed for HRSM. 

To move forward, it will be necessary to augment the 
prototype R2D2C tool to ease the process of expressing 
HRSM procedures in a form that can be automatically trans- 
lated into a formal CSP model. 

5.- Related Work 

Hare1 [6] [SI has advocated scenario-based programming 
through UML use cases and play-in scenarios. The present 
work differs in that it uses scenarios in the form of struc- 
tured text that is easily understandable by engineers and 

non-engineers. In addition, the results of converting the 
structured text to traces and then from traces to a formal 
model allows us to use a wide range of formal methods tools 
(e.g., model checkers), which can be used to verify and val- 
idate the system [ 101. 

NASA Ames has been working on the automatic trans- 
lation of UML use cases to executable code, and report suc- 
cess in using the approach on large applications [21]. Our 
approach is different, however, in that we are not limited 
to UML use cases, nor to natural language. R2D2C accom- 
modates any input mechanism whereby requirements can be 
represented as scenarios, and traces extracted. Our approach 
works equally well with graphical, mathematical, and tex- 
tual requirements representations. 

More importantly, the key to our approach and what 
makes it invaluable for high-dependability applications is 
the full formal basis, and complete mathematical tractability 
from requirements through to code. To our knowledge, no 
other currently available automated development methodol- 
ogy can make this claim [ 101. 



channel boltrelease, brakeset, stabilize, wfctoolaquire : T ; 
GA = brakeset ! 0 -> GA ; 
DRone = brakeset ? x -> stabilize ! 0 -> brakeset ! 0 -> boltrelease ! 0 

--> DRone ; 
DRtwo = boltrelease ? x -> brakeset ? x -> wfctoolaquire ! 0 -> brakeset ! 0 

System = DRone [ I { I 1 % )  I 1  DRtwo I I I I }  I 1  GA ; 
-> DRtwo ; 

process 
GA = brakeset!O + GA 

process 
DRone = brakeset?x --+ stabilize!O + brakeset!O + boltrelease!O -+ DRone 

process 
DRtwo = boltrelease?x -+ brakeset?x --+ wfctoolaquire!O + brakeset!O -+ DRtwo 

process 
System = DRone 1 1  DRtwo 1 1  GA 

Figure 8. CSP for the modfied sequential procedure fragment. 

Transaction boltrelease = new Transaclion(Z), 
Transaction brakeset = newTransachon(2). 
Transaction stabilize = newTransaction(2), 
Transaction wfctoolaquire = new TransactionQ), 
0 4  Gfi-init = newt GA(brakese0, 
DRone DRone-init= new DRone(boltrelease, brakeset, stabilize), 
DRho  DRtwo-init = new @Rtwo(boltrelease, brakeset, wfctoolaquire), 
DRone-init starto. 
DRtwo-init starto, 
G4-init starto, 

EXECUTING 

brakeset 
brakeset 

DEADLOCK DETECTED~ 

Figure 9. Snapshot of the R2D2C tool detect- 
ing a deadlock error in example HRSM proce- 
dure. 

6. Conclusions and Future Work 

R2D2C is a unique approach to the automatic derivation 
of complex systems. It is unique in that it supports fully 
(mathematically) tractable development from requirements 
elicitation through to automatic code generation (and back 
again). While other approaches have supported various sub- 

sets of the development lifecycle, there has been hereto- 
fore a “jump” in deriving from the requirements the formal 
model that is a prerequisite for sound automatic code gen- 
eration. Yet, R2D2C is a simple approach, combining tech- 
niques and notations that are well understood, well tried and 
tested, and trusted. The novelty of the approach, and the part 
of the approach that achieves continuity in the development 
process, is the use of a theorem prover to reverse the laws of 
concurrency, and to achieve levels of inference that would 
be impossible for a human being to perform on all but triv- 
ial systems. 

It is our contention that R2D2C, and other approaches 
that similarly provide mathematical soundness throughout 
the development lifecycle will: 

0 Dramatically increase assurance of system success by 
ensuring 

- completeness and consistency of requirements 
- that implementations are true to the requirements 
- that automatically coded systems are bug-free 
- that implementation behavior is as expected 

0 Decrease costs and schedule impacts of complex sys- 
tems through automated development 

0 Decrease re-engineering costs and delays 

Future work will include improving the quality and ex- 
tent of the embedding of CSP in ACL2, and optimizing that 
for efficiency. We plan a plethora of support tools to al- 
low us to easily change the level of abstraction in a for- 
mal model, to visualize various system models and changes 



. I  

in those models, and to aid in tracking changes through the 
development process (or the reverse engineering process). 
We plan to enhance our existing prototype to support the 
full version of R2D2C, to make it into a fully functional ro- 
bust prototype, and to apply it to more significant examples 
than the one presented in this paper. 

Acknowledgements 

This work was encouraged and funded in part by NASA 
Goddard Space Flight Center (GSFC) Information Systems 
Division and the GSFC Technology Transfer Office. We are 
grateful to Joe Hennessy, Ted Mecum, Nona Cheeks, Chris 
Kirkman, Diana Cox, Yvette Conwell-Brown, and Keith 
Dixon for their support and encouragement. John Erickson 
(University of Texas at Austin) worked with us and pro- 
vided invaluable expertise on the prototype R2D2C environ- 
ment. We are grateful to the HRSM team, particularly Rud 
Moe and Richard Strafella, for their support and collabora- 
tion. The approach described in this paper is protected un- 
der United States and international Patent Applications as- 
signed to the United States government. 

References 

[l] ANTLR: mother Tool for Language Recognition. 
http://www.antlr.org/. 

[2] Communicating sequential processes for Java (JCSP). 
http://www.cs. kent.ac.ddprojects/ofa/jcsp/. 

[3] Failures-Divergences Rejinement: User Manual and Tuto- 
rial. Formal Systems (Europe), Ltd., 1999. 

[4] M. J. Butler. csp2B : A Practical Approach To Combining 
CSP ana‘ B. Declarative Systems and Software Engineer- 
ing Group, Department of Electronics and Computer Sci- 
ence, University of Southampton, February 1999. 

[SI J. Gosling, B. Joy, G. Steele, and G. Bracha. JavaTM Lan- 
guage Specijcation. Addison Wesley, Boston, second edi- 
tion, 2000. 

[6] D. Harel. From play-in scenarios to code: An achievable 
dream. IEEE Computer, 34(1):53-60,2001. 

[7] D. Harel. Comments made during presentation at “Formal 
Approaches to Complex Software Systems” panel session. 
ISoLA-04 First International Conference on Leveraging Ap- 
plications of Formal Methods, Paphos, Cyprus. 31 October 
2004. 

[8] D. Harel and R. Marelly. Come, Let’s Play: Scenario-Based 
Programming Using LSCs and the Play-Engine. Springer- 
Verlag, 2003. 

[9] M. G.  Hinchey and S .  A. Jarvis. Concurrent Systems: F o m l  
Development in CSP. International Series in Software Engi- 
neering. McGraw-Hill International, London, UK, 1995. 

[lo] M. G. Hinchey, J. L. Rash, and C. A. Rouff. A formal ap- 
proach to requirements-based programming. In Proc. IEEE 
International Conference and Workshop on the Engineering 
of Computer Based Systems, ECBS-2005, Greenbelt, Mary- 
land, USA, 4-5 April 2005. IEEE Computer Society. 

[ 1 13 C. A. R. Hoare. Communicating sequential processes. Com- 
munications ofthe ACM, 21(8):666-677, 1978. 

[ 121 C. A. R. Hoare. Communicating Sequential Processes. Pren- 
tice Hall International Series in Computer Science. Prentice 
Hall International, Englewood Cliffs, NJ, 1985. 

[13] S. T. Huang. A distributed deadlock detection algorithm for 
CSP-like communication. ACM Transactions on Program- 
ming Languages and Systems, 12(1):102-122, 1990. 

[14] M. Kaufmann and Panagiotis Manolios and J Strother 
Moore. Computer-Aided Reasoning: An Approach. Ad- 
vances in Formal Methods Series. Kluwer Academic Pub- 
lishers, Boston, 2000. 

[15] D. Lea. Concurrent Programming in JavaTM: Design Princi- 
ples and Patterns. The JavaTM Series. Addison-Wesley Pro- 
fessional, Reading, Massachusetts, second edition, 2000. 

[ 161 D. L. Pamas. Using mathematical models in the inspection 
of critical software. In Applications of Fonnal Methods, In- 
ternational Series in Computer Science, pages 17-3 1. Pren- 
tice Hall, Englewood Cliffs, NJ, 1995. 

1171 Y. Smaragdakis, S. S. Huang, and D. Zook. Program genera- 
tors and the tools to make them. In PEPM ’04: Proceedings 
of the 2004 ACM SIGPLAN Symposium on Partial Evalua- 
tion and Semantics-Based Program Manipulation, pages 92- 
100. ACM Press, 2004. 

[18] K. Walrath, M. Campione, A. Huml, and S .  Zakhour. JFC 
Swing Tutorial, The: A Guide to Constructing GUIs. Addi- 
son Wesley, Boston, second edition, 2004. 

[19] P. H. Welch, J. R. Aldous, and J. Foster. CSP network- 
ing for Java (JCSP.net). In Proceedings of the Global and 
Collaborative Computing Workshop (ICCS 2002), volume 
2330 of Lecture Notes in Computer Science, pages 695-108. 
Springer-Verlag, 2002. 

[20] P. H. Welch and J. M. R. Martin. A CSP model for Java mul- 
tithreading. In Proc. International Symposium on Sofnyare 
Engineering for Parallel and Distributed Systems, pages 
114-122, June 2000. 

[21] J. Whittle, J. Saboo, and R. Kwan. From scenarios to code: 
An air traffic control case study. In Proc. ICSE-25, 25th 
IEEWACM International Conference on Sofrware Engineer- 
ing, pages 49W95, Portland, Oregon, 2003. IEEE Com- 
puter Society Press. 


